A promising two-dimensional channel material: monolayer antimonide phosphorus
نویسندگان
چکیده
منابع مشابه
Mechanical behaviour of motion for the two-dimensional monolayer system
In this paper we study the dynamics of the 2D-motion of a particle of monolayer. First we consider the usual physical time component and the plan manifold R2, having the polar coordinates. Then a geometric approach to nonholonomic constrained mechanical systems is applied to a problem from the two dimensional geometric dynamics of the Langmuir-Blodgett monolayer. We consider a constraint sub...
متن کاملTwo-Dimensional Material Nanophotonics
The emerging two-dimensional (2D) materials exhibit a wide range of electronic properties, ranging from insulating hexagonal boron nitride (hBN), semiconducting transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), to semi-metallic graphene. The plethora of 2D materials together with their heterostructures, which are free of the traditional...
متن کاملAl-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study
Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particul...
متن کاملPhonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material.
Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps and recent advances in the synthesis, characterization and device fabrication of the representative MoS2, WS2, WSe2 and MoSe2 TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphene, the atom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Materials
سال: 2016
ISSN: 2095-8226,2199-4501
DOI: 10.1007/s40843-016-5096-6